In this study, a modified probabilistic neural network approach is proposed. The global probability density function (PDF) of variables is reflected by summing the heterogeneous local PDFs automatically determined in the individual standard derivation of each variable. The proposed modified probabilistic neural network (MPNN) is applied to predict the stability number of armor bøcks of break waters using the experiental data of van der Meer, and the estimated results of the MPNN are compared with those of conventional probabilistic neural network. The MPNN shows improved results in predicting the stability number of armor blocks of breakwaters and in providing the promising reliability for stability numbers estimated by using the individual standard deviation in a variable.
Read full abstract