Magnesium matrix syntactic foams (MgMSFs) are emerging lightweight materials with unique capabilities to exhibit remarkable thermal, acoustic, and mechanical properties. In the current study, lightweight glass micro balloon (GMB)-reinforced Mg syntactic foams were synthesized via the powder metallurgy technique using hybrid microwave sintering. The processing employed in the study yielded MgMSFs with refined grain sizes, no secondary phases, and reasonably uniform distributions of hollow reinforcement particles. The developed MgMSFs exhibited densities 8%, 16%, and 26% lower than that of the pure Mg. The coefficient of thermal expansion reduced (up to 20%) while the ignition resistance improved (up to 20 °C) with the amount of GMB in the magnesium matrix. The MgMSFs also exhibited a progressive increase in hardness with the amount of GMB. Although the MgMSFs showed a decrease in the yield strength with the addition of GMB hollow particles, the ultimate compression strength, fracture strain, and energy absorption capabilities increased noticeably. The best ultimate compression strength at 321 MPa, which was ~26% higher than that of the pure Mg, was displayed by the Mg-5GMB composite, while the Mg-20GMB composite showed the best fracture strain and energy absorption capability, which were higher by ~39 and 65%, respectively, when compared to pure Mg. The specific strength of all composites remained superior to that of monolithic magnesium. Particular efforts were made in the present study to interrelate the processing, microstructural features, and properties of MgMSFs.
Read full abstract