Residues from the incineration of hazardous wastes are classified as hazardous byproducts because they contain heavy metals. Chromium-containing sludge (CCS) is industrial sludge produced during the electroplating process and includes heavy metals, such as Cr, Pb, and Cu. These heavy metals can infiltrate natural ecosystems and cause significant environmental damage. To limit the toxicity of leached products, hazardous waste incineration residues (HWIRs) can be repurposed as raw materials for producing glass-ceramics. In this study, we designed an orthogonal experiment to optimize the heat treatment process, yielding glass-ceramics with excellent properties and realizing heavy metal solidification. The toxic characteristic leaching procedure was used to determine the leaching toxicity of the cosintered solidified heavy metals, revealing that their solidification efficiencies exceed 90%. Moreover, X-ray diffraction analysis indicates that certain heavy metals participate in the formation of heavy-metal-containing crystal lattices (FeCr2O4 and PbFe12O19), thereby reducing their leaching concentration. These results show that cosintering HWIR and CCS is an effective approach for heavy metal solidification and provides valuable insights into its utilization for producing building materials.
Read full abstract