Here, we describe patterns of reproduction and flight phenology of putative Phloeosinus punctatus in giant sequoia groves and compare morphology and genotypes of beetles from sympatric giant sequoia (Sequoiadendron giganteum) and California incense-cedar (Calocedrus decurrens). Surveys conducted in 2022 revealed that numerous branches fall from giant sequoia crowns (on average ~30 branches/tree), with 20%-50% of trees per site shedding branches, depositing breeding material for beetles on the forest floor that subsequently becomes colonized. When noninfested branches cut from mature giant sequoias were placed at the ground surface, they were colonized by P. punctatus and produced an average of 28 beetles/kg branch. Climbing and examination of sequoia crowns in 2023 showed that 75% of mature trees across 11 groves showed evidence of adult beetle entrance holes in their crowns. In 2021, tests with sticky traps showed that beetles alighted on fallen branches from 20th May to 20th August (peak landing: 2nd July); a logistic model developed from emergence data in 2021 and 2022 predicts the emergence of F1 offspring from branches between 10th July and 1st September (peak emergence: 8th August). Beetles emerging from giant sequoia preferred to settle on giant sequoia, did not reproduce in incense-cedar, and diverged morphologically from beetles emerging from incense-cedar. However, phylogenetic analysis of three genes (28S, CAD, and COI) revealed no clear pattern of sequence divergence, suggesting a single species (P. punctatus) that colonizes both hosts, though cryptic speciation may not be detectable with standard barcoding genes. Ecological and potential management implications are discussed.
Read full abstract