Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα) plays a pivotal role in the activation of nuclear factor kappa-B (NF-κB) pathway in response to pathogens infections in mammals, but the information about IKKα in the regulation of immune responses is still limited in teleost fishes. In the present study, the full-length cDNA of an IKKα homologue, AjIKKα, was cloned by 5′ and 3′ SMART RACE from Japanese eel, and its characteristics of expression in response to various PAMPs and A. hydrophila infection were investigated both in vivo and in vitro using quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the subcellular localization of AjIKKα GFP fusion protein and the induction of AjIKKα in the activation of NF-κB, type I IFN and AP1 performed using Dual-Glo luciferase assay system were also detected. Sequence comparison analysis revealed that AjIKKα has typical conserved domains, including an N-terminal kinase domain, an ubiquitin-like domain, a scaffold dimerization domain, and a C-terminal NEMO-binding domain. The predicted three-dimensional structure of AjIKKα is similar to that of human IKKα. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed a broad expression for AjIKKα in a wide range of tissues, with the highest expression in the liver, followed by the intestine, gills, and spleen, and with a lower expression in the muscle and heart. The AjIKKα expressions in the liver and kidney were significantly induced following injection with the viral mimic poly I:C and Aeromonas hydrophila infection, whereas the bacterial mimic LPS down-regulated the expression of AjIKKα in the spleen. In vitro, the AjIKKα transcripts of Japanese eel liver cells were significantly enhanced by the treatment of LPS, poly I:C, CpG-DNA, and PGN or the stimulation of different concentration of Aeromonas hydrophila (1 × 106 cfu/mL, 1 × 107 cfu/mL, and 1 × 108 cfu/mL). Luciferase assays demonstrated that AjIKKα expression could significantly induce NF-κB, AP-1 and type I IFN promoter activation in a dose-dependent manner. Additionally, subcellular localization studies showed that AjIKKα was evenly distributed in the cytoplasm in the natural state, but AjIKKα was found to aggregate into spots in the cytoplasm after the stimulation of LPS and poly I:C. These results collectively indicated that AjIKKα plays an important role in innate immunity of host against antibacterial and antiviral infection likely via the activation of NF-κB, AP1and type I IFN signaling pathway.
Read full abstract