Image analysis and feature extraction of remoted sensing data are significant for mapping irrigated agriculture areas as a source of information to improve water management and agricultural planning. This paper presents an image segmented base approach GEOBIA (Geographic Object-Based Image Analysis) to extract irrigated areas by Center Pivot Irrigation System (CPIS). This study suggests a semi-automated recognition of circular patterns for the mapping of irrigated regions by center pivots, using Sentinel -2 MSI images, 10 meters spatial resolution. A set of images from different seasons, humid and dry are used to maximize de CPIS’s occurrence. A multiresolution segmentation method was applied, and a large number of segment-based shape features was extracted and used as input to a feature selection procedure (shape descriptors: Area; Compactness; Circularity Factor; Length/Width; Radius of smallest enclosing ellipse; and Roundness). In addition, another shape descriptor “Circularity Factor” was developed in this research and played an important role during preliminaries classification processes. The accuracy assessment of preliminaries classifications has validated used the Circularity Factor together with the other chosen shape descriptors to reach better results to CPIS’s detection. Furthermore, 86.23% of the CPIS mapped in the classification process is in accordance with the ground truth map. This methodology can be used to map large areas in a relatively short time and provides a tool for monitoring irrigated areas.
Read full abstract