BackgroundStaphylococcus aureus (S. aureus) is one of the most widespread bacterial pathogens in animals and humans, and its role as an important causative agent of food poisoning is well-documented. The aim of this study was to highlight and characterize the resistance patterns of methicillin-resistant S. aureus (MRSA) in charcuterie products sold in selected supermarkets (SM) in Bobo-Dioulasso, Burkina Faso.MethodsIn this study, 72 samples including ham (n = 19), merguez (n = 22), sausage (n = 15) and minced meat (n = 16) were collected from 3 supermarkets. Standard microbiology methods were utilised to characterise S. aureus isolates. Phenotypic resistance patterns were investigated using the disk diffusion method on Mueller-Hinton agar. Genotypic testing using polymerase chain reaction (PCR) was performed on the isolates to detect the 16S-23S gene. Using specific primers, the following genes PVL, TSST-1, mecA, gyrA, gyrB, qnrA, intI1 and aac(6’)-Ib-cr were identified from purified DNA by PCR.ResultsAmong the 72 ready-to-eat food samples, S. aureus was present in 51, (70.83%). The yield was highest in both the ham and merguez food products, 15/51 (29.41%) each, followed by minced meat 12/51 (23.53%) and sausage 9/51 (17.65%). A total of 35 isolates (68.63%) were confirmed as S. aureus after molecular characterization using 16–23 S primers with 05 (14.29%) strains identified as MRSA. All of the MRSA and majority of the methicillin-sensitive S.aureus (MSSA) isolates were resistant to penicillin G, ampicillin, tetracycline and erythromycin, whereas one isolate from minced meat was found in SM3-harbouring PVL, TSST-1, mecA, gyrA, gyrB and Int1 genes.ConclusionsOur study revealed a high prevalence of S. aureus in chacuterie products in Bobo-Dioulasso with antimicrobial profiles that show resistance to most antibiotics. These findings should inform and augment efforts to raise awareness among local supermarket owners on adequate food manufacturing practices as well as promoting food safety and hygiene.
Read full abstract