Gray mold caused by Botrytis spp. is a common disease on various hosts, including strawberries. In this study, we obtained 59 Botrytis isolates from strawberries from greenhouses in Zhejiang Province, China. Identification of the sampled isolates at species level was performed by a duplex PCR assay method, the result showed that, in Zhejiang, gray mold on strawberry fruits is caused by a complex of Botrytis groups including B. cinerea group N (47.5 %) and B. cinerea group S (52.5 %). The sensitivities of all Botrytis isolates to pyrimethanil were determined based on discriminatory dose method on L-asparagine-based agar medium plate. Our results showed that the isolates obtained from the greenhouses with continuous use of pyrimethanil developed severe resistance to pyrimethanil, and the resistance frequencies of B. cinerea group N and group S isolates were 89.3 % and 41.9 %, respectively. By sequencing, four different resistance-related point mutations were identified in 38 Botrytis isolates: Bcpos5L412F (16 isolates, 42.1 %), Bcpos5L412V (14 isolates, 36.8 %), Bcmdl1E407K (2 isolates, 5.3 %), and Bcpos5L412S⸱Bcmdl1E407K (1 isolate, 2.6 %). The exogenous addition of methionine could not completely alter the resistance of Botrytis isolates to pyrimethanil. In this study, the pyrimethanil resistance in Botrytis isolates was steadily inherited, and compared to the pyrimethanil-sensitive isolates, the resistant mutants exhibited good fitness in sporulation capacity, spore germination rate, and virulence on strawberries. In conclusion, our results provided a description of the genetic structure of Botrytis groups complex on strawberry fruits and reminded growers to focus on the stable pyrimethanil resistance in Botrytis isolates, caused by point mutations in BcPos5 and BcMdl1.
Read full abstract