With the rapid development of various services in wireless communications, spectrum resource has become increasingly valuable. Faster than Nyquist (FTN) signaling, proposed in the 1970s, is a promising paradigm for improving spectrum utilization. This paper proposes the variable-packing-ratio (VPR)-based transmissions for high spectrum efficiency (SE) and security, respectively. Aided by deep learning (DL)-based estimation, the proposed scheme for high SE can achieve a higher capacity than the conventional Nyquist-criterion transmission with negligible modification to existing communication paradigms (e.g., spectrum allocation or frame structure). More importantly, for VPR-based secure transmission, a dynamic generation scheme is proposed to produce randomly distributed positions to switch the packing ratio, which can effectively avoid detections and attacks. In addition, we propose a simplified DL-based packing ratio estimation for both of these two scenarios so that the receiver can estimate the packing ratio without any in-band or out-band control messages. Simulation results show that the proposed simplified estimation achieves nearly the same accuracy and convergence speed as the original multi-branch fully-connected structure with a complexity reduction of 20 folds. Finally, we derive the closed-form SE of the proposed VPR transmission under different channels. The numerical results validate the correctness of the derivation and demonstrate the SE gains of the VPR scheme beyond conventional Nyquist transmission.
Read full abstract