In this manuscript, we present a coherent rigorous overview of the main properties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type are scattered through the literature and can be difficult to find. A special emphasis has been put on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar fact that for a general nonsmooth domain Ω in Rn, 0<t<1, and 1<p<∞, it is not necessarily true that W1,p(Ω)↪Wt,p(Ω). This has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding the behavior of elliptic differential operators on compact manifolds. In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in the literature in the generality appearing here.
Read full abstract