The effective field theory of single-field inflation characterizes the inflationary epoch in terms of a pattern of symmetry breaking. An operator acquires a time-dependent vacuum expectation value, defining a preferred spatial slicing. In the absence of dynamical gravity, the fluctuations around the time-dependent background are described by the Goldstone boson associated with this symmetry breaking process. With gravity, the Goldstone is eaten by the metric, becoming the scalar metric fluctuation. In this paper, we will show that in general single-field inflation, the statistics of scalar metric fluctuations are given by the statistics of this Goldstone boson decoupled from gravity up to corrections that are controlled as an expansion in slow-roll parameters. This even holds in the presence of additional parameters, like the speed of sound, that naively enhance the impact of the gravitational terms. In the process, we derive expressions for leading and sub-leading gravitational corrections to all-orders in the Goldstone boson.
Read full abstract