BackgroundMyocardial fibrosis, a hallmark of heart disease, is closely associated with macrophages, yet the genetic pathophysiology remains incompletely understood. In this study, we utilized integrated single-cell transcriptomics and bulk RNA-seq analysis to investigate the relationship between macrophages and myocardial fibrosis across omics integration.MethodsWe examined and curated existing single-cell data from dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocardial infarction (MI), and heart failure (HF), and analyzed the integrated data using cell communication, transcription factor identification, high dimensional weighted gene co-expression network analysis (hdWGCNA), and functional enrichment to elucidate the drivers of macrophage polarization and the macrophage-to-myofibroblast transition (MMT). Additionally, we assessed the accuracy of single-cell data from the perspective of driving factors, cell typing, anti-fibrosis performance of left ventricular assist device (LVAD). Candidate drugs were screened using L1000FWD.ResultsAll four heart diseases exhibit myocardial fibrosis, with only MI showing an increase in macrophage proportions. Macrophages participate in myocardial fibrosis through various fibrogenic molecules, especially evident in DCM and MI. Abnormal RNA metabolism and dysregulated transcription are significant drivers of macrophage-mediated fibrosis. Furthermore, profibrotic macrophages exhibit M1 polarization and increased MMT. In HF patients, those responding to LVAD therapy showed a significant decrease in driver gene expression, M1 polarization, and MMT. Drug repurposing identified cinobufagin as a potential therapeutic agent.ConclusionUsing integrated single-cell transcriptomics, we identified the drivers of macrophage-mediated myocardial fibrosis in four heart diseases and confirmed the therapeutic effect of LVAD on improving HF with single-cell accuracy, providing novel insights into the diagnosis and treatment of myocardial fibrosis.
Read full abstract