Bacterial contamination of gelatin is of great concern. Indeed, this animal colloid has many industrial applications, mainly in food and pharmaceutical products. In a previous study (E. De Clerck and P. De Vos, Syst. Appl. Microbiol. 25:611-618), contamination of a gelatin production process with a variety of gram-positive and gram-negative bacteria was demonstrated. In this study, bacterial contamination of semifinal gelatin extracts from several production plants was examined. Since these extracts are subjected to harsh conditions during production and a final ultrahigh-temperature treatment, the bacterial load at this stage is expected to be greatly reduced. In total, 1,129 isolates were obtained from a total of 73 gelatin batches originating from six different production plants. Each of these batches was suspected of having bacterial contamination based on quality control testing at the production plant from which it originated. For characterization and identification of the 1,129 bacterial isolates, repetitive-element PCR was used to obtain manageable groups. Representative strains were identified by means of 16S rRNA gene sequencing, species-specific gyrB PCR, and gyrA and rpoB sequencing and were tested for gelatinase activity. The majority of isolates belonged to members of Bacillus or related endospore-forming genera. Representative strains were identified as Bacillus cereus, Bacillus coagulans, Bacillus fumarioli, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus pumilus, Bacillus sonorensis, Bacillus subtilis, Bacillus gelatini, Bacillus thermoamylovorans, Anoxybacillus contaminans, Anoxybacillus flavithermus, Brevibacillus agri, Brevibacillus borstelensis, and Geobacillus stearothermophilus. The majority of these species include strains exhibiting gelatinase activity. Moreover, some of these species have known pathogenic properties. These findings are of great concern with regard to the safety and quality of gelatin and its applications.
Read full abstract