Aims To identify whether phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular-regulated protein kinases signalling pathways are implicated in the chemoresistance of gastric cancer and to explore the possible mechanisms. Methods Gastric cancer cell lines SGC7901 and BGC823 were exposed to etoposide, Wortmannin + etoposide or PD98059 + etoposide. Cell cycle distribution and cell apoptosis were detected using flow cytometry and Hoechst 33258 staining. Cells viability was determined by a colourimetric assay utilising 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Akt activity was detected using non-radioactive immunoprecipitation-kinase assay. Western blotting was exploited to evaluate the level of phosphorylated ERK1/2 and expressions of c-Myc and p53 protein. Results Etoposide suppressed the viability of SGC7901 and BGC823 cells in a time- and dose-dependent manner; PD98059 and Wortmannin were able to enhance the cytotoxicity of etoposide. The apoptotic levels of cells treated with Wortmannin + etoposide or PD98059 + etoposide were significantly higher than those of cells treated with etoposide only. Phospho-ERK1/2, Akt activity and expression of c-Myc were significantly induced by etoposide in a time-dependent manner; moreover, there was a weak effect on the expression of p53 protein. Both Wortmannin and PD98059 elevated the level of p53 expression strikingly, however, only PD98059 suppressed the up-regulation trend of c-Myc expression induced by etoposide. Conclusion Chemotherapy reagent activated phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular-regulated protein kinases signalling pathways, which decreased the chemotherapy sensitivity of gastric cancer cell lines SGC7901 and BGC823 via suppressing the expression of p53 and enhancing the expression of c-Myc. This may be one of the molecular mechanisms of gastric cancer chemoresistance.
Read full abstract