Given the increasing awareness of the negative effects of fatigue on daily activities, mental health, and quality of life, antifatigue supplements are becoming increasingly popular among consumers. Selenium has been found to have antifatigue potential in high dosage, but may cause toxicity effects to the body. In this study, inorganic selenium was first converted to nanoselenium particles via in situ synthesis by Lactobacillus rhamnosus SHA113 (Se-LRS), and then loaded by Ganoderma lucidum spores (GLS). The resulting products were not only assessed for their antioxidant activities, but also the antifatigue potential in mice. As a result, both Se-LRS and the Se-LRS/GLS complex exhibited higher antioxidant and antibacterial activities in simulated gastrointestinal fluids compared to isolated selenium nanoparticles. The Se-LRS/GLS complex demonstrated sustained release of selenium in simulated gastrointestinal fluids and showed significant alleviation of exercise-induced fatigue indicators, but relatively lower liver selenium accumulation in the mice, surpassing the effects of isolated nanoselenium. No toxicity was found to Caco-2 cells for Se-LRS/GLS complex at 2µg/mL. This is a novel approach to enhance the antifatigue potential of selenium without causing extra toxicity.
Read full abstract