The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a significant agricultural pest that causes extensive damage to soybean production worldwide. Second-stage juveniles (J2s) of the SCN migrate through the soil and infest the roots of host plants in response to certain chemical substances secreted from the host roots. Therefore, controlling SCN chemotaxis could be an effective strategy for its management.In the present study, we identified the Hg-gpa-3d gene, which encodes the G protein alpha subunit, as a key regulator of SCN chemotaxis. Gene silencing of Hg-gpa-3d reduced the attraction of SCN J2s to host roots, as well as to nitrate ions, a chemoattractant recognized through a mechanism different from that of host recognition. However, silencing of Hg-gpa-3d did not affect avoidance behavior towards unpleasant temperatures or stylet protrusion. These results suggest that Hg-gpa-3d is a crucial gene in the regulation of SCN chemotaxis and provide new insights into the chemotactic mechanisms of the SCN.
Read full abstract