As an indispensable necessity in daily routine of citizens, hazardous materials (Hazmat) not only plays an increasingly important role, but also brings a series of transportation uncertainty phenomena, the most prominent of which is a safety problem. When it attempts to find the best vehicle route scheme that can possess the lowest risk attribute in a fuzzy random environment for a single warehouse, the influence of cost should also be taken into account. In this study, a new mathematical theory was conducted in the modeling process. To take a full consideration of uncertainty, vehicle travel distance and population density along the road segment were assumed to be fuzzy variables. Meanwhile, accident probability and vehicle speed were set to be stochastic. Furthermore, based on the assumptions, authors established three chance constrained programming models according to the uncertain theory. Model I was used to seek the achievement of minimum risk of the vehicle route scheme, using traditional risk model; the goal of Model II was to obtain the lowest total cost, including the green cost, and the main purpose of Model III was to establish a balance between cost and risk. To settle the above models, a hybrid intelligent algorithm was designed, which was a combination of genetic algorithm and fuzzy random simulation algorithm, which simultaneously proved its convergence. At last, two experiments were designed to illustrate the feasibility of the proposed models and algorithms.
Read full abstract