최근 내비게이션에서는 실시간 교통정보와 과거의 교통정보를 가공하여 미래의 교통정보를 예측하는 패턴 교통정보를 같이 활용하여 빠른 길을 안내해주고 있다. 그러나 현재 사용되는 패턴 교통정보는 과거의 정보를 가공하여 교통정보를 예측하기 때문에 특별한 상황(유고, 날씨 등)에서는 예측이 정확하지 않는 문제점을 가지고 있다. 그래서 본 연구에서는 빠른 길을 찾기 위해 실시간으로 운전자들이 요청하는 경로탐색 데이터를 분석하여 가까운 미래 운전자들이 위치할 도로의 교통 혼잡도를 미리 파악하여 패턴 교통정보 보다 정확한 예측 교통정보를 제시하였다. 연구결과 첫째, 연구지역의 정체경로인 양재에서 마포간 차량속도 비교에서는 기존 상습정체 도로의 속도가중치 정확도가 3km/h에서 18km/h의 오차율이 발생하였지만, 본 연구의 Real 예측 교통 정보를 적용한 결과는 1km/h에서 5km/h의 오차율이 발생하였다. 둘째, 경로 품질에서 기존의 경로보다 최대 약 9분, 평균 약 3분 일찍 목적지에 도착하여 예측 교통정보 결과의 신뢰성을 입증할 수 있었다. 셋째, 기존의 경로탐색 결과 보다 혼잡도를 미리 예측하여 혼잡이 발생할 도로에 대해 회피되는 경로탐색 결과를 도출할 수 있었다. 따라서 본 연구결과의 경로탐색 비교를 통해 교통량에 대한 예측정보를 획득할 수 있었으며 이를 활용하여 실시간 빠른 길 탐색이 가능하고, 향후 교통 흐름을 분산 시키는데도 도움이 될 것으로 판단된다. Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.
Read full abstract