The MHYT domain, identified over two decades ago for its potential to detect diatomic gases like CO, O2or NO, has awaited experimental validation as a protein sensory domain. Here, we characterize the MHYT domain-containing transcriptional regulator CoxC, which governs the expression of the cox genes responsible for aerobic CO oxidation in the carboxidotrophic bacterium Afipia carboxidovorans OM5. The C-terminal LytTR-type DNA-binding domain of CoxC binds to an operator region consisting of three direct repeats sequences overlapping the -35 box at the target PcoxB promoter, which is consistent with the role of CoxC as a specific transcriptional repressor of the cox genes. Notably, the N-terminal transmembrane MHYT domain endows CoxC with the ability to sense CO as an effector molecule, as demonstrated by the relief of CoxC-mediated repression and binding to the PcoxB promoter upon CO exposure. Furthermore, copper serves as the essential divalent cation for the interaction of CO with CoxC, thereby confirming previous hypothesis regarding the role of copper in the gas-sensing mechanism of MHYT domains. CoxC represents the prototype of a novel subfamily of single-component LytTR transcriptional regulators, characterized by the fusion of a DNA-binding domain with a membrane-bound MHYT sensor domain.
Read full abstract