Root exudates have a key role in communication between plants and microbes in the rhizosphere. Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (Fusarium oxysporum), drastically reduces watermelon yields in continuous cultivation systems, but it can be significantly alleviated using watermelon/aerobic rice intercropping system as shown by the research carried out in this laboratory. It is important to evaluate the interaction between root exudates from the two crops and the pathogen and thus to clarify the mechanism of disease suppressiveness in the intercropping system. The effects of phenolic acids, sugars and free amino acids in root exudates from watermelon (REW) and rice (RER) on the growth of Fusarium oxysporum were studied. The results obtained are listed as follows: (1) REW significantly increased spore germination and sporulation, whereas RER had inhibitory effects on those two parameters. (2) HPLC analysis showed that salicylic acid, p-hydroxybenzoic acid and phthalic acid were identified in exudates from both plants, but p-coumaric acid was only detected in rice and ferulic acid only in watermelon. Moreover, of the total rice exudates a high proportion (37.9 %) of p-coumaric acid was detected and the total amount of phenolic acids was 1.4-fold as high as that in watermelon. (3) Considerable differences in the components and contents of both sugars and amino acids were found between REW and RER exudates. (4) Exogenously applied alanine (Ala) increased spore germination and sporulation. In contrast, addition of exogenous p-coumaric acid reduced spore germination and sporulation, relative to controls. It was concluded that the rice root exudates had anti-fungal properties while that from watermelon promoted pathogen growth. This discovery provided a scientific basis for practicing watermelon/aerobic rice intercropping to control Fusarium wilt in watermelon.
Read full abstract