Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder with varied patient progression. We aim to test the hypothesis that AD patients can be categorized into subgroups based on differences in progression. We leveraged data from three randomized clinical trials (RCTs) to develop a knowledge-guided, deep temporal clustering (KG-DTC) framework for AD subtyping. This model combined autoencoders for contextual information capture, k-means clustering for representation formation, and clinical outcome classification for clinical knowledge integration. The derived representations, encompassing demographics, APOE genotype, cognitive assessments, brain volumes, and biomarkers, were clustered using the Gaussian Mixture Model to identify AD subtypes. Our novel KG-DTC framework was developed using placebo data from 2,087 AD patients across three solanezumab clinical trials (EXPEDITION, EXPEDITION2, and EXPEDITION3), achieving high performance in outcome prediction and clustering. The KG-DTC model demonstrated superior clustering structures, especially when combined with k-means clustering loss. External validation with independent clinical trial data showed consistent clustering results, with a 0.33 silhouette score for three clusters. The model's stability was confirmed through a leave-one-out approach, with an average adjusted Rand Index around 0.945. Three distinct AD subtypes were identified, each exhibiting unique patterns of cognitive function, neurodegeneration, and amyloid beta levels. Notably, Subtype 3 (S3) showed rapid cognitive decline across multiple clinical measures (e.g., 0.64 in S1 vs. -1.06 in S2 vs. 15.09 in S3 of average ADAS total change score, p<.001). This innovative approach offers promising insights for understanding variability in treatment outcomes and personalizing AD treatment strategies.
Read full abstract