Light quality was shown to exert well-coordinated regulatory effects on the composition and function of the thylakoid membranes as well as on the photosynthetic rates of intact leaves from Atriplex triangularis grown in continuous blue, white and red lights (50 μE · m −2 · s −1). The higher photosynthetic rates in plants grown in blue light, as compared to those in white and red lights, resulted from marked changes in both light-harvesting complexes and electron carriers. The concentrations of electron carriers such as atrazine binding sites, plastoquinone, cytochromes b and f and P-700 on a chlorophyll basis were markedly increased in Atriplex grown in blue light; and the apparent light-harvesting antenna unit sizes of Photosystems I and II were greatly reduced. Consequently, the electron transport capacities of Photosystems I and II were also increased as was the coupling factor CF 1 activity. Atriplex grown in red light had lower photosynthetic rates than those grown in blue or white light by incorporating changes in the composition and function of the thylakoids in a direction opposite to those caused by growth in blue light. When these regulatory effects of light quality were compared with those of light quantity [6,7], it is clear that Chla Chl b ratios, electron transport capacities of Photosystems I and II, concentrations of plastoquinone, atrazine binding sites, coupling factor CF 1 activity and the apparent antenna unit size of Photosystem II are more affected by light quantity, whereas light quality has a greater influence on the concentration of P-700, the apparent antenna unit size of Photosystem I and the overall photosynthetic rates of intact leaves.
Read full abstract