The aim of this study was to investigate the effects of active immunization against recombinant Anti-Müllerian hormone (AMH) protein on the ovarian follicular development, egg production, and molecular regulatory mechanisms in broody-prone Zhedong White geese. For this, a recombinant goose AMH protein was expressed using a prokaryotic expression system. Fifty incubating geese from the same genetic background were selected and equally divided into two groups. The immunization group was actively immunized against the recombinant goose AMH protein, whereas the control group was immunized against bovine serum albumin (BSA). Immunization against AMH accelerated ovarian follicular development and increased clutch sizes by one to two eggs in two consecutive laying-incubation cycles. Furthermore, immunization against AMH upregulated the mRNA transcription levels of the FSH-beta gene in the pituitary gland, and FSHR, 3beta-HSD, and Smad4 genes in the granulosa layer of pre-ovulatory follicles; however, immunization downregulated the expression of the OCLN gene in the granulosa layer of pre-ovulatory follicles, and Smad5 and Smad9 genes in the granulosa layer of SYFs. These results suggest that AMH might hinder ovarian follicular development by decreasing both pituitary FSH secretion as well as ovarian follicular sensitivity to FSH. The latter molecular mechanism could be fulfilled by regulating Smad5 or Smad9 signals in SYFs, as well as the FSHR and Smad4 signals that affect progesterone synthesis and yolk deposition in the pre-ovulatory follicles.
Read full abstract