Abstract. The Seto Inland Sea (SIS) is a critical semi-enclosed coastal sea in Japan, characterized by intricate coastlines and narrow straits that give rise to various fronts. Despite extensive research on tidal fronts, knowledge gaps persist regarding their spatiotemporal dynamics, particularly in certain poorly documented regions. Additionally, the understanding of thermohaline fronts, which emerge during winter, requires further investigation. We aimed to enhance our understanding of tidal and thermohaline fronts in the SIS by analyzing their dynamic processes, including intra-tidal and spring–neap tidal cycles, seasonal variations, and anomalous frontal variability. Using a gradient-based algorithm with an advanced contextual feature-preserving median filter, we processed the high-resolution sea surface temperature dataset to detect and quantify tidal and thermohaline fronts. Our analysis revealed the presence of numerous tidal fronts, predominantly influenced by the M2 tide, across the SIS, with substantial spatial variations in amplitude due to complex coastlines and narrow straits. Intra-tidal movements of tidal fronts corresponded to ebb and flood currents, while spring–neap tidal cycles and seasonal shifts influenced frontal positions and intensities. Additionally, thermohaline fronts were identified in certain regions during winter, characterized by large horizontal temperature and salinity gradients. This study enhances the understanding of tidal and thermohaline fronts in the SIS, emphasizing the importance of intra-tidal and wind-driven influences on frontal dynamics. However, limited observational coverage and resolution emphasize the need for further research to explore long-term temporal changes and better grasp the influences of ambient currents and wind patterns. Such insights are vital for effective coastal management and environmental monitoring in the SIS region.
Read full abstract