Both chromatic and luminance-modulated stimuli are served by multiple spatial-frequency-tuned channels. This experiment investigated the independence versus interdependence of spatial frequency channels that serve the detection of red–green chromatic versus yellow–black luminance-modulated stimuli at low spatial frequencies. Contrast thresholds for both chromatic and luminance-modulated gratings were measured within 12 individual subjects using a repeated-measures design. Spatial frequencies ranged from 0.27 to 2.16 c/deg. A covariance structure analysis of individual differences was applied to the data. We computed statistical sources of individual variability, used them to define covariance channels, and determined the number and frequency tuning of these channels. For luminance-modulated gratings, two covariance channels were found, including one above and one below 1 c/deg [cf. Peterzell, & Teller (1996). Individual differences in contrast sensitivity functions: the coarsest spatial pattern analyzer. Vision Research, 36, 3077–3085]. For chromatic gratings, correlations between thresholds for most spatial frequencies were uniformly high, yielding a single covariance channel covering all but the highest spatial frequency tested. A combined analysis of both data sets recovered the same three covariance channels, and showed that detection thresholds for low-frequency red–green chromatic and luminance-modulated stimuli are served by separate, statistically independent processes.
Read full abstract