Full-waveform inversion (FWI) can provide accurate estimates of subsurface model parameters. In spite of its success, the application of FWI in areas with high-velocity contrast remains a challenging problem. Quadratic regularization methods are often adopted to stabilize inverse problems. Unfortunately, edges and sharp discontinuities are not adequately preserved by quadratic regularization techniques. Throughout the iterative FWI method, an edge-preserving filter, however, can gently incorporate sharpness into velocity models. For every point in the velocity model, edge-preserving smoothing assigns the average value of the most uniform window neighboring the point. Edge-preserving smoothing generates piecewise-homogeneous images with enhanced contrast at boundaries. We adopt a simultaneous-source frequency-domain FWI, based on quasi-Newton optimization, in conjunction with an edge-preserving smoothing filter to retrieve high-contrast velocity models. The edge-preserving smoothing filter gradually removes the artifacts created by simultaneous-source encoding. We also have developed a simple model update to prevent disrupting the convergence of the optimization algorithm. Finally, we perform tests to examine our algorithm.
Read full abstract