Ultrasonic velocity in calcaneus correlates highly with bone mineral density, which is a good predictor of osteoporotic fracture risk. Several commercial bone sonometers perform a velocity measurement based on the transit time of a broadband pulse to assess skeletal status. This approach is somewhat problematic, however, because several authors have reported ambiguities in measurements in calcaneus. Phase velocity is an alternative that may be less dependent on device spectral characteristics. In addition, dispersion (the frequency-dependence of phase velocity) is a fundamental property worth investigating to increase understanding of interaction between ultrasound and bone. To compare two group-velocity measurement methods and one phase-velocity measurement method, a polycarbonate sample (for method validation) and 24 human calcanei were investigated in vitro. Phase velocity in calcaneus at 500 kHz was 1511 m/s ± 30 m/s (mean ± standard deviation). Average phase velocity decreased approximately linearly with frequency (−18 m/s MHz). The two group velocity measurements were comparable and tended to be slightly lower than phase velocity. The magnitude of dispersion showed little correlation with bone mineral density.
Read full abstract