Free Space Optical (FSO) links can be used to setup FSO communication networks or to supplement radio and optical fiber networks. Hence, it is the broadband wireless solution for closing the “last mile” connectivity gap throughout metropolitan networks. Optical wireless fits well into dense urban areas and is ideally suited for urban applications. This paper gives an overview of free-space laser communications. Different network architectures will be described and investigated regarding reliability. The usage of “Optical Repeaters”, Point-to-Point and Point-to-Multipoint solutions will be explained for setting up different network architectures. After having explained the different networking topologies and technologies, FSO applications will be discussed in section 2, including terrestrial applications for short and long ranges, and space applications. Terrestrial applications for short ranges cover the links between buildings on campus or different buildings of a company, which can be established with low-cost technology. For using FSO for long-range applications, more sophisticated systems have to be used. Hence, different techniques regarding emitted optical power, beam divergence, number of beams and tracking will be examined. Space applications have to be divided into FSO links through the troposphere, for example up- and downlinks between the Earth and satellites, and FSO links above the troposphere (e.g., optical inter-satellite links). The difference is that links through the troposphere are mainly influenced by weather conditions similar but not equal to terrestrial FSO links. Satellite orbits are above the atmosphere and therefore, optical inter-satellite links are not influenced by weather conditions. In section 3 the use of optical wireless for the last mile will be investigated and described in more detail. Therefore important design criteria for connecting the user to the “backbone” by FSO techniques will be covered, e.g., line of sight, network topology, reliability and availability. The advantages and disadvantages of different FSO technologies, as well as the backbone technology are discussed in this respect. Furthermore, the last mile access using FSO will be investigated for different environment areas (e.g., urban, rural, mountain) and climate zones. The availability of the FSO link is mainly determined by the local atmospheric conditions and distance and will be examined for the last mile. Results of various studies will complete these investigations. Finally, an example for realizing a FSO network for the last mile will be shown. In this example FSO transmitters with light emitting diodes (LED) instead of laser diodes will be described. By using LEDs, problems with laser-and eye safety are minimized. Some multimedia applications (like video-conferences, live TV-transmissions, etc.) will illustrate the range of applications for FSO last mile networks.
Read full abstract