The soluble Ca2+-binding protein (SCBP) from the earthworm Lumbricus terrestris was analyzed with regard to its role as a soluble muscle relaxation factor. The actomyosin ATPase activity was inhibited by the addition of decalcified SCBP as it binds Ca2+ stronger than the regulatory proteins associated with the actomyosin. Competitive 45Ca2+-binding assays with decalcified actomyosin and SCBP showed that 45Ca2+ is first bound to actomyosin and is subsequently taken over by SCBP with increasing incubation time. Ca2+ competition experiments carried out with 45Ca2+ loaded SCBP and fragmented sarcoplasmic reticulum vesicles revealed that 45Ca2+ bound to SCBP can be deprived by the ATP-dependent Ca2+ uptake of the sarcoplasmic reticulum. Furthermore, experiments in a diffusion chamber showed that the addition of SCBP significantly enhances the 45Ca2+ flux in a concentration dependent manner. The amount of the Ca2+ flux increasetends to reach a maximum value of about 70%. With all protein components isolated from the obliquely striated muscle, our in vitro experiments consistently show that SCBP may accelerate muscle relaxation similar as assumed for vertebrate parvalbumin.
Read full abstract