In this study, pure CdO nanoparticles, magnetic Fe3O4 nanoparticles, and Fe3O4-CdO nanocomposites were prepared via a solution combustion method using cetyltrimethylammonium bromide (CTAB) as a template. These prepared nanomaterial samples were characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron microscopy (XPS), transmittance electron microscopy (TEM), and scanning electron microscopy (SEM) analysis. XRD patterns confirmed the purity and the crystalline nature of the prepared samples. FTIR and Raman spectra observed the metal-oxygen (M-O) bond formation. UV-vis DRS studies were performed to investigate the optical properties and the bandgap energy determination. The surface morphology and the size of the pure CdO nanoparticles, magnetic Fe3O4, and nanocomposites of Fe3O4-CdO were determined via TEM and SEM analysis. Under optimum experimental conditions, the Fe3O4-CdO nanocomposites were applied for photocatalytic activity against Methylene blue dye. Under visible light irradiation, Fe3O4-CdO nanostructures showed an efficient photocatalytic degradation of 92% against Methylene blue organic dye and showed excellent stability for multiple cycles of reuse.
Read full abstract