Circular RNA FAT atypical cadherin 1 (circ-FAT1) has been reported to play roles in colorectal cancer (CRC) development. Here, the purpose of this study was to investigate the function and mechanism of circ-FAT1 in CRC tumorigenesis and its potential value in the clinic. Levels of genes and proteins were examined by quantitative real-time polymerase chain reaction and Western blot. In vitro assays were conducted using cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, transwell assay, and tube formation assay, respectively. The target relationship between miR-619-5p and circ-FAT1 or FOS-like antigen 2 (FOSL2) was verified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo assay was performed using a mousesubcutaneous xenograft model. Circ-FAT1 and FOSL2 were highly expressed in CRC tissues and cells. Functionally, knockdown of circ-FAT1 or FOSL2 suppressed CRC cell apoptosis, migration, invasion, and angiogenesis, but induced cell apoptosis in vitro. Mechanistically, circ-FAT1 acted as a sponge for miR-619-5p to up-regulate the expression of FOSL2, which was confirmed to be a target of miR-619-5p. A series of rescue experiments demonstrated that miR-619-5p inhibition or FOSL2 overexpression reversed the inhibitory action of circ-FAT1 silencing on CRC cell malignant phenotypes mentioned above. Pre-clinically, lentivirus-mediated circ-FAT1 knockdown inhibited the tumorigenesis of CRC xenografts in nude mice via regulating miR-619-5p and FOSL2. Circ-FAT1 knockdown repressed FOSL2 expression by sponging miR-619-5p to suppress CRC tumorigenesis, providing a potential approach for CRC therapeutics.
Read full abstract