Background & objectiveThe cervical region of dentin plays a crucial role in the distribution of masticatory forces, with vertical root fractures often initiating and spreading from this area. This study investigates the distribution of occlusal stresses in the cervical region of root dentin, considering varying thicknesses and cross-sections, using Finite Element Analysis.Materials & methodsSections from central and premolar teeth were imported into CAD to create 3D models. The tooth structure and surrounding tissues were modeled using mechanical properties such as Young’s modulus and Poisson’s ratio. Four cross-sectional shapes—circular, oval, sand clock, and kidney—were designed. A force of 50 Newtons, representing the occlusal force of the opposing tooth, was applied to the palatal surface of the models at a 60° angle for anterior teeth and a 45° angle for premolars. The stress distribution in the cervical dentin was then analyzed.ResultsVon Mises stress values indicated that stress points were highest in the kidney, sand clock, oval, and circular cross-sections, respectively. Increased thickness of the residual dentinal wall resulted in reduced maximum and minimum stress and a smaller area of stress regions. In all cross-sections, the minimum and maximum stress points were predominantly on the palatal and buccal sides of the cervical dentin, respectively.ConclusionThe study demonstrated that stress distribution in teeth varies with different root cross-sections, with higher stress observed in the sand clock and kidney cross-sections. Thinner dentin in the cervical region leads to greater stress concentration, especially in the buccal area of the tooth.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
9936 Articles
Published in last 50 years
Articles published on Force Distribution
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
10021 Search results
Sort by Recency