Episodic seafloor methane venting is associated with focused fluid flow through fracture systems at many sites worldwide. We investigate the relationship between hydraulic fracturing and transient gas pressures at southern Hydrate Ridge, offshore Oregon, USA. Two colocated seismic surveys, acquired 8 years apart, at Hydrate Ridge show seismic amplitude variations interpreted as migration of free gas in a permeable conduit, Horizon A, feeding an active methane hydrate province. The geophysical surveys also reveal transients in gas venting to the water column. We propose that episodic gas migration and pressure fluctuations in the reservoir underlying the regional hydrate stability zone (RHSZ) at southern Hydrate Ridge influence methane supply to the RHSZ and are linked with periodic fracturing and seafloor methane venting. We model the effect of pore pressure variations within the deep methane source on fracturing behavior with a 1D model that couples multiphase flow, hydrate accumulation, and pore pressure buildup. As the reservoir pressure increases, fractures open when the pore pressure exceeds the hydrostatic vertical effective stress. Gas then flows through the fractures and vents at the seafloor while hydrate precipitates in the fracture system. We show that active seafloor gas venting occurs for approximately 30 years, and that the available methane reservoir is exhausted 30 to 55 years after the onset of pressure buildup. This provides important constraints on the time scale of transient fluid flow at southern Hydrate Ridge, and illustrates how pore pressure pulses affect fluid flow and fracturing behavior in active methane hydrate provinces.
Read full abstract