A low cost and eco-friendly technology to bioremediate toxic metals associated with fly ash dumps that contaminate ground and surface water in and around fly ash settling ponds, was investigated. The impact of augmentation of fly ash tolerant bacterial strains, isolated from Typha latifolia growing naturally on fly ash dumps, was studied for metal extractability. It was observed that most of the bacterial strains either induced the bioavailability of Fe, Zn and Ni or immobilized Pb, Cr, Cu, Cd in the fly ash. However, there were few exceptions also. In case of Ni, eight strains enhanced metal mobility, while others caused metal immobilization. The findings also suggest that metal solublization and immobilization are specific to bacterial strains. While induced bioavailability of metals by bacteria may be used to accelerate the phytoextraction of metals from fly ash by hyper accumulator plants, immobilization of metals can check their migration to water reservoirs and reduce the human suffering in affected areas. Thus, bacteria serve the dual purpose and may result in the microbe- assisted phytoremediation of contaminated sites.
Read full abstract