AbstractGallium fluoride phosphate glasses feature low refractive index, high energy radiation resistance, wide transmission range, and favorable emission characteristics of rare‐earth dopants. For the development of optimized glass compositions, a fundamental understanding of these properties in terms of glass structure is sought. We report nuclear magnetic resonance (NMR) structural studies of glasses in the system xGa(PO3)3–(40 − x)GaF3–20BaF2–20ZnF2–20SrF2 (x = 5, 10, 15, 20, and 25 mol%). 31P NMR results with 71Ga recoupling show that the network structure is dominated by P–O–Ga linkages, and no P–O–P linkages exist. 71Ga NMR results show that Ga is mainly six‐coordinated featuring a mixed fluoride/phosphate coordination. Quantitative estimates of this ligand distribution around gallium were obtained by 71Ga{31P} spin echo double resonance (REDOR) measurements. Photophysical properties suggest changes in the Eu(III) ligand distribution toward a fluoride‐dominated environment at low P/F ratio while the glass network is largely sustained by bridging oxygen atoms via P–O–Ga linkages.
Read full abstract