Diffusion-enhanced fluorescence energy transfer was used to study the structure of photoreceptor membranes from bovine retinal rod outer segments. The fluorescent energy donor was Tb 3+ chelated to dipicolinate and the acceptor was the 11- cis retinal chromophore of rhodopsin in vesicles made from disc membranes. The rapid-diffusion limit for energy transfer was attained in these experiments because of the long excited state lifetime of the terbium donor (~2 ms). Under these conditions, energy transfer is very sensitive to a, the distance of closest approach between the donor and acceptor (Thomas et al., 1978). Vesicles containing terbium dipicolinate in their inner aqueous space were prepared by sonicating disc membranes in the presence of this chelate and chromatographing this mixture on a gel filtration column. The sidedness of rhodopsin in these vesicles was the same as in native disc membranes. The transfer efficiency from terbium to retinal in this sample was 43%. For an R 0 value of 46.7 Å and an average vesicle diameter of 650 Å, this corresponds to an a value of 22 Å from the inner aqueous space of the vesicle. The distance of closest approach from the external aqueous space, determined by adding terbium dipicolinate to a suspension of already formed vesicles, was found to be 28 Å. These values of a show that the retinal chromophore is far from both aqueous surfaces of the disc membrane. Hence, the transverse location of the retinal chromophore is near the center of the hydrophobic core of the disc membrane. These findings suggest that conformational changes induced by photoisomerization are transmitted through a distance of at least 20 Å within rhodopsin to trigger subsequent events in visual excitation.
Read full abstract