This work is a part of an effort to maximize the operational safety of a 50 MWth circulating fluidized-bed (CFB) boiler located in Perstorp, Sweden, co-firing animal waste, peat, waste wood, forest residues, and industrial sludge. An increase in the CFB boiler availability reduces the use of expensive fossil fuel (oil) in backup boilers during operational problems of the CFB boiler. The work includes a thorough mapping and analysis of the failure and preventive maintenance statistics, together with elemental analysis of boiler ash and deposits, flue gas, and fuel fractions. Correlations between boiler parameters and boiler availability are sought, and recommendations regarding boiler design and operation are made. An explicit description of the boiler is made to allow for the use of presented material as future reference material. It was observed that the failure frequency is especially high where (1) rapid chloride-rich windward deposit buildup is combined with (2) high construction material temperature and (3) windward soot blowing. In areas where one of these factors was absent, a more moderate material loss could be seen. The flue gas average elemental composition can be regarded as close to constant as it flows through the series of heat exchangers. Thus, the significant differences in deposit buildup of different flue gas cross-sections cannot be a result of changed average flue gas composition. The areas of the steam tubes suffering from rapid material loss are also exposed to high deposit rates. Downstream of a well-defined temperature threshold in the secondary superheater, neither material loss nor substantial deposit buildup could be seen. Tube deposits are dominated by Na, S, Ca, K, and P, but only Na, K, and S are enriched in the windward tube deposits relative to the fly ash bulk composition. The temperature of the flue gas is the major parameter governing the rate of deposit buildup in the boiler heat exchangers. Of the fuel nitrogen, 95 wt % leaves the process as N2(g). Fuel mix ash content analysis via a separate ashing of different fuel fractions by heating to 550°C does not reflect the ash content of the fuel mix correctly. The soot blowing angle of attack on the deposits should be regarded in areas with rapid deposit growth when boilers and soot blowers are designed to allow for efficient tube cleaning. The use of heterogeneous fuel in the boiler creates strong variations in fuel, flue gas, and particle composition and makes it increasingly important to have online measurements to be able to understand and control the furnace chemistry. The filter ash in the flue gas baghouse filter effectively sorbs HCl(g) and NH3(g) from the flue gas already without the addition of sorbents. Online flue gas measurement to control the furnace chemistry must therefore be installed upstream of the filter to enable accurate control. Also, a significantly larger filtration area can be installed in the baghouse filters with a slight increase in cost, to allow for efficient use of the ash as free of cost sorbent and lowered emission levels. Scanning electron microscopy analysis of the flue gas deposits shows that no pieces of ground bone, sand particles, or other relatively large flue gas particles contribute directly to the deposit buildup. White crystals rich in N and Cl, most likely ammonium chloride, precipitate downstream of the flue gas filter. The precipitation interferes with the dust emission measurement and forces a reduced usage of waste-derived fuels because of the exceedance of environmental limits. More expensive forest fuels are used to replace waste-derived fuels, resulting in a higher fuel cost.
Read full abstract