Abstract Strong wind events cause significant societal damage ranging from loss of property and disruption of commerce to loss of life. Over portions of the United States, the strongest winds occur in the cold season and may be driven by interactions with the terrain (downslope winds, gap flow, and mountain wave activity). In the first part of this two-part series, we evaluate the High-Resolution Rapid Refresh (HRRR) model wind speed and gust forecasts for the 2016–22 winter months over Wyoming and Colorado, an area prone to downslope windstorms and gap flows due to its complex topography. The HRRR model exhibits a positive bias for low wind speeds/gusts and a large negative bias for strong wind speeds/gusts. In general, the model misses many strong wind events, but when it does predict strong winds, there is a high false alarm probability. An analysis of proxies for surface winds is conducted. Specifically, 700- and 850-mb (1 mb = 1 hPa) geopotential height gradients are found to be good proxies for strong wind speeds and gusts at two wind-prone locations in Wyoming. Given the good agreement between low-level height gradients and surface wind speeds yet a strong negative bias for strong wind speeds and gusts, there is a potential shortcoming in the boundary layer physics in the HRRR model with regard to predicting strong winds over complex terrain, which is the focus of the second part of this two-part study. Last, the sites with the largest strong wind speed bias are found to mostly sit on the leeward side of high mountains, suggesting that the HRRR model performs poorly in the prediction of downslope windstorms. Significance Statement We investigate the performance of the High-Resolution Rapid Refresh (HRRR) model with respect to strong wintertime wind speeds and gusts over the complex terrain of Wyoming and Colorado. We show that the overall performance of the HRRR model is low with regard to strong wind speed and wind gust forecasts across the investigated winter seasons, with a large negative bias in predicted strong wind speeds and gusts and a small positive bias for weak wind speeds and gusts. The largest biases are found to be on the leeward side of high mountains, indicating poor prediction of downslope winds. This study also utilizes National Weather Service forecasting metrics to understand their performance with respect to strong wind forecasts, and we find that they provide skill in forecasting these events.
Read full abstract