Alkyl chain modification strategies in both organic semiconductors and inorganic dielectrics play a crucial role in improving the performance of organic thin-film transistors (OTFTs). Polyimide (PI) and its derivatives have received extensive attention as dielectrics for application in OTFTs because of flexibility, high-temperature resistance, and low cost. However, low-temperature solution processing PI-based gate dielectric for flexible OTFTs with high mobility, low operating voltage, and high operational stability remains an enormous challenge. Furthermore, even though di-n-decyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT) is known to have very high mobility as an air-stable and high-performance organic semiconductor, the C10-DNTT-based TFTs on the PI gate dielectrics still showed relatively low mobility. Here, inspired by alkyl side chain engineering, we design and synthesize a series of PI materials with different alkyl side chain lengths and systematically investigate the PI surface properties and the evolution of organic semiconductor morphology deposited on PI surfaces during the variation of alkyl side chain lengths. It is found that the alkyl side chain length has a critical influence on the PI surface properties, as well as the grain size and molecular orientation of semiconductors. Good field-effect characteristics are obtained with high mobilities (up to 1.05 and 5.22 cm2/Vs, which are some of the best values reported to date), relatively low operating voltage, hysteresis-free behavior, and high operational stability in OTFTs. These results suggest that the strategy of optimizing alkyl side-chain lengths opens up a new research avenue for tuning semiconductor growth to enable high mobility and outstanding operational stability of PI-based OTFTs.
Read full abstract