The sequential-surface-integration-process (SSIP) hypothesis was proposed to elucidate how the visual system constructs the ground-surface representation in the intermediate distance range (He et al, 2004 Perception 33 789-806). According to the hypothesis, the SSIP constructs an accurate representation of the near ground surface by using reliable near depth cues. The near ground representation then serves as a template for integrating the adjacent surface patch by using the texture gradient information as the predominant depth cue. By sequentially integrating the surface patches from near to far, the visual system obtains the global ground representation. A critical prediction of the SSIP hypothesis is that, when an abrupt texture-gradient change exists between the near and far ground surfaces, the SSIP can no longer accurately represent the far surface. Consequently, the representation of the far surface will be slanted upward toward the frontoparallel plane (owing to the intrinsic bias of the visual system), and the egocentric distance of a target on the far surface will be underestimated. Our previous findings in the real 3-D environment have shown that observers underestimated the target distance across a texture boundary. Here, we used the virtual-reality system to first test distance judgments with a distance-matching task. We created the texture boundary by having virtual grass- and cobblestone-textured patterns abutting on a flat (horizontal) ground surface in experiment 1, and by placing a brick wall to interrupt the continuous texture gradient of a flat grass surface in experiment 2. In both instances, observers underestimated the target distance across the texture boundary, compared to the homogeneous-texture ground surface (control). Second, we tested the proposal that the far surface beyond the texture boundary is perceived as slanted upward. For this, we used a virtual checkerboard-textured ground surface that was interrupted by a texture boundary. We found that not only was the target distance beyond the texture boundary underestimated relative to the homogeneous-texture condition, but the far surface beyond the texture boundary was also perceived as relatively slanted upward (experiment 3). Altogether, our results confirm the predictions of the SSIP hypothesis.
Read full abstract