Creep testing was carried out at around 650°C for a martensitic 8Cr-2WVTa steel (F82H), which is a candidate alloy for the first wall of the fusion reactors of the Tokamak type. Rupture strength of the double tempered steel (F82HD) is lightly higher than that of simply tempered steel (F82HS). On the other hand, creep rate of F82HD is obviously smaller than that of F82HS in acceleration creep, though creep strain of F82HD in transition creep, where creep rate decreases with increasing strain, is larger than that of F82HS. Hardness of the crept F82HD decreases with increasing creep strain, which corresponded with the transmission electron microscopy (TEM) observation. On the contrary, X-ray diffraction and electron back-scattered diffraction pattern measurements show that fine sub-grains are created during transition creep. The creep curves were analyzed using an exponential type creep equation and the apparent activation energy, the activation volume and the pre-exponential factor were calculated as a function of creep strain. Then, these parameters were converted into two parameters, i.e. equivalent obstacle spacing (EOS) and mobile dislocation density parameter (MDDP). While EOS decreases with increasing creep strain, MDDP increases with increasing strain during transition creep. The decrease in EOS and the increase in either EOS or MDDP are rate-controlling factors in transition and acceleration creep, respectively. On the other hand, in case of F82HS, EOS increases and MDDP decreases during transition creep. In this case, the decrease in MDDP controls the creep rate during transition creep of F82HS. It is concluded that both EOS and MDDP are representative parameters of the change in substructure during creep.
Read full abstract