Ultrathin films of poly(thiophene) (PT) and poly(bithiophene) (PBT) were prepared by electrochemical route using ionic liquid (BFEE) as medium and electrolyte. Distinct morphologies and electrical properties were observed in these materials. To evaluate its response in photovoltaics, these films were used as active layer in bilayer geometry solar cells with the electron acceptor molecule C60. The best performance was observed for PT films. In order to probe the differences in molecular dynamics and structural order, ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core–hole clock method at the sulfur K absorption edge. Electron delocalization times for the different polymeric films were derived as a function of the excitation energy. Photoabsorption measurements were conducted and molecular orientation derived. These results corroborated with the morphology found for these films and thus the performance of PT and PBT in the devices, and with the proposed conduction mechanism.
Read full abstract