In aqueous electrochemistry, water in contact with charged surfaces is ubiquitous and indispensable, dictating the binding of solutes to electrode surfaces as well as the transport process of protons and electrons in the interfacial region. A comprehensive understanding of the structure and dissociation of interfacial water at the molecular level is extremely important yet challenging, given its critical role in various physical, chemical, and biological processes. In situ vibrational spectroscopic techniques serve as a powerful tool for acquiring the molecular structure of electrode surfaces and probing interfacial reaction mechanisms in real time. In this review, we briefly summarize the latest advances in the electric double layer model and the experimental methods employed at the electrode-solution interface. Particular emphasis is placed on in situ vibrational spectroscopic techniques that have unveiled new insights into the molecular structure of interfacial water across diverse electrode surfaces under ambient conditions. And then, it also provides an overview of recent progress on the subtle relationship between the structure of interfacial water and its dissociation activity, aiming to provide novel insights into the fields of electrochemistry, energy and catalysis.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3452 Articles
Published in last 50 years
Articles published on Field Of Catalysis
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3120 Search results
Sort by Recency