The use of silicon-based ceramics and composites as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today's use of super alloy hot-section components. As a series of research for FOD resistant, a particle erosion wear test was carried out for continuous Pre- SiC fiber-reinforced SiC matrix composites with a new concept of lab. scale fabrication by LPS process. The result shows that aperture (some form of porosity) between fiber and interface has a deleterious effect on erosion resistance. Aperture along the fiber interfaces consequently causes a severe wear in the form of fiber detachment. Wear rate increase proportional as contents of open porosity increases. For nearly full dense composite materials of about 0.5 % porosity, are about 200 % more wear-resistant than about 5 % porous composites. Grain growth and consolidate condition of matrix which directly affects to FOD resistant are also discussed.
Read full abstract