Brown adipose tissue (BAT) is a specialised fat store that is metabolised by the newborn lamb to ensure effective adaptation to the cold challenge of the extra-uterine environment. Increasing BAT reserves therefore has the potential to increase neonatal thermogenesis and survival. It is established that arginine supplementation can increase fetal BAT stores but the biological mechanisms involved are unclear. The objective of this study was to test the hypothesis that increased fetal BAT stores resulting from maternal arginine supplementation is mediated by activation of the thermogenic program. Brown adipose tissue was collected from fetuses of ewes supplemented with arginine from 100 to 140 days of gestation. Increased peri-renal fat stores in fetuses from arginine-supplemented ewes was associated with an increase in uncoupling protein 1 (UCP-1) and PRD1-BF-1-RIZ1 homologous domain containing protein-16 expression, but not proliferator-activated receptor gamma or proliferator-activated receptor gamma-co-activator-1α in BAT. The activity of UCP-1 is regulated by hormones including cortisol and thyroid hormones. Cortisol level in fetuses from supplemented sheep was 68% greater than those from control ewes, indicating that cortisol may control upregulation of UCP-1 expression in the ovine neonate. The DNA and RNA concentration in BAT of both groups suggest that increased peri-renal fat stores is not associated with an increase in cell number or number of ribosomes, but rather an increase in the size of individual fat cells. Collectively, these results indicate that maternal arginine supplementation during mid to late gestation improved the thermoregulatory ability of lambs and this could potentially increase their survival in early life.
Read full abstract