The microbial community is essential for the formation of aroma development in high-acidity greengage wine fermentation. Recent observations also highlight positive effects of mogroside V (MG V) on microorganisms in fermented foods, but the underlying chemical and biological mechanisms remain inadequate. The results indicated differences in the physicochemical properties among greengage wines, particularly a 50% increase in the ethanol conversion rate. Concurrently, GC-MS and sensory analyses demonstrated that MG V augmented carbohydrate conversion into ethyl esters (twice as much as in the control group), exhibiting tropical fruit and floral aroma profiles. The perceived intensity of these aromatic compounds increased by over 30%, thereby enriching the overall aromatic harmony of the wine. Integrated analysis of KEGG pathways and CAZymes annotations demonstrated that the enhancement of ethyl ester formation by MG V depends on improvement of the transport of carbohydrates and MG V, as well as accelerating the flux of pyruvate to acetyl-CoA in yeast. In conclusion, our study presents a targeted strategy for the high-acidity fruit wine industry of modulating this metabolic node in yeast, thereby achieving a focused enhancement of tropical fruit aroma characteristics in fruit wines.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
8156 Articles
Published in last 50 years
Articles published on Fermented Foods
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
7260 Search results
Sort by Recency