In this study, the effect of mixed-strain fermentation using Kluyveromyces marxianus with either Lactobacillus plantarum or Pediococcus pentosaceus on the physiochemical and nutritional properties of white kidney bean flour sourdough was investigated. The results indicated that mixed-strain fermentation reduced the anti-nutritional factors produced from the white kidney bean flour, especially in the sourdough fermented by L. plantarum and K. marxianus (WKS-LK) compared to that by P. pentosaceus and K. marxianus (WKS-JK). Meanwhile, the content of lactic acid and acetic acid and the proportion of peptides with molecular weights ranging from <500 to 5000 Da were increased in the sourdoughs (WKS-LK > WKS-JK). Compared to the control (WK), microstructural characteristics of the dough seemed to be improved in WKS-LK followed by WKS-JK in terms of their corresponding gluten network consistency. Moreover, mixed fermentation led to a reduced starch digestibility accompanied by a higher content of resistant starch and slowly digestible starch. In contrast, protein digestibility was enhanced in WKS-LK and WKS-JK sourdough breads. More importantly, the changes in gut microbiota composition, short-chain fatty acid (SCFA) production, systemic inflammation, glucose tolerance and liver tissue histopathology following 21-day consumption of the sourdough bread were also evaluated via an animal model. The intake of sourdough breads reduced the abundance of the pathogenic microbiota Escherichia shigella. In contrast, the corresponding abundance of Rikenellaceae, Akkermansiaceae, Erysipelotrichaceae, Prevotellaceae and Eubacterium coprostanoligenes was increased, followed by enhanced SCFA generation, with the highest in WKS-LK and then WKS-JK. Meanwhile, a reduced level of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in the serum and improved glucose tolerance and liver tissue histopathology following the bread consumption were also achieved in the order of WKS-LK, then WKS-JK mice compared to WK.
Read full abstract