The research presented in this paper takes another step towards developing methods for automatic condition verification to detect structural damage to vehicle wheel rims. This study presents the utilisation of vibration spectra via Fast Fourier Transform (FFT) and a neural network’s learning capabilities for evaluating structural damage. Amplitude and time cycles of acceleration were analyzed as the structural response. These cycles underwent FFT analysis, leading to the identification of four diagnostic symptoms described by 20 features of the diagnostic signal, which in turn defined a condition vector. In the subsequent stage, the amplitude and frequency cycles served as input data for the neural network, and based on them, self-organizing maps (SOM) were generated. From these maps, a condition vector was defined for each of the four positions of the rim. Therefore, the technical condition of the wheel rim was determined based on the variance in condition parameter features, using reference frequencies of vibration spectra and SOM visualisations. The outcome of this work is a unique synergetic diagnostic system with innovative features, identifying the condition of a wheel rim through vibration and acoustic analysis along with neural network techniques in the form of Kohonen maps.
Read full abstract