MPOX (Monkeypox) has become a significant global health concern, requiring accurate forecasting for effective outbreak management. This study improves MPOX case prediction using Facebook Prophet with hyperparameter optimization. The dataset consists of global MPOX case records collected over time. Data preprocessing includes missing value imputation, normalization, and aggregation. Facebook Prophet is applied to forecast case trends, with model performance evaluated using Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). A baseline Prophet model is first trained using default parameters. The model is then optimized by fine-tuning seasonality mode, changepoint prior scale, and growth model. The results show that hyperparameter tuning significantly enhances forecasting accuracy. The optimized model reduces MSE from 541,844.77 to 320,953.34 and RMSE from 736.10 to 566.53, demonstrating improved precision. The model also captures trend shifts and seasonal fluctuations more effectively. In conclusion, this study confirms that tuning Facebook Prophet improves epidemic forecasting, making it a reliable tool for MPOX monitoring. Future research should integrate external factors, such as vaccination rates and mobility data, to further refine predictions.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
153 Articles
Published in last 50 years
Articles published on Facebook Prophet
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
152 Search results
Sort by Recency