The effective entrapment of Carbon dots (CDs) into a polymer-silica hybrid matrix, formed as free standing transparent flexible films, is presented. The composite's synthesis, characterization, device application and properties -mechanical, thermal and optical- are being provided and discussed. CDs of 3nm mean size with strong photoluminescence are embedded into a silica matrix during the sol-gel procedure, using tetraethyl orthosilicate as the precursor and F127 triblock copolymer as the structure directing agent under acidic conditions. The final hybrid nanostructure forms free standing transparent films that show high flexibility and long term stable CDs luminescence indicating the protective character of the hybrid matrix. It is crucial that the photoluminescence of the hybrid's CDs is not seriously affected after thermal treatment at 550°C for 30min. Moreover, the herein reported hybrid is demonstrated to be suitable for the fabrication of advanced photonic structures using soft lithography processes due to its low shrinkage and distortion upon drying, both attributable to its porosity. Finally, it is reported that addition of F127 ethanolic solution in aqueous solution of CDs induces a blue-shift of their photoluminescence.
Read full abstract